Goodness-of-fit processes for logistic regression: simulation results.
نویسندگان
چکیده
In this paper we use simulations to compare the performance of new goodness-of-fit tests based on weighted statistical processes to three currently available tests: the Hosmer-Lemeshow decile-of-risk test; the Pearson chi-square, and the unweighted sum-of-squares tests. The simulations demonstrate that all tests have the correct size. The power for all tests to detect lack-of-fit due to an omitted quadratic term with a sample of size 100 is close to or exceeds 50 per cent to detect moderate departures from linearity and is over 90 per cent for these same alternatives for sample size 500. All tests have low power with sample size 100 to detect lack-of-fit due to an omitted interaction between a dichotomous and continuous covariate, while the power exceeds 80 per cent to detect extreme interaction with a sample size of 500. The power is low to detect any alternative link function with sample size 100 and for most alternative links for sample size 500. Only in the case of sample size 500 and an extremely asymmetric link function is the power over 80 per cent. The results from these simulations show that no single test, new or current, performs best in detecting lack-of-fit due to an omitted covariate or incorrect link function. However, one of the new weighted tests has power comparable to other tests in all settings simulated and had the highest power in the difficult case of an omitted interaction term. We illustrate the tests within the context of a model for factors associated with abstinence from drug use in a randomized trial of residential treatment programmes. We conclude the paper with a summary and specific recommendations for practice.
منابع مشابه
Goodness-of-fit tests for logistic regression models when data are collected using a complex sampling design
Logistic regressionmodels are frequently used in epidemiological studies for estimating associations that demographic, behavioral, and risk factor variables have on a dichotomous outcome, such as disease being present versus absent. After the coefficients in a logistic regression model have been estimated, goodness-of-fit of the resulting model should be examined, particularly if the purpose of...
متن کاملA SAS/IML Macro for Goodness-of-Fit Testing in Logistic Regression Models with Sparse Data
The logistic regression model has become the standard analyzing tool for binary responses in a variety of disciplines. Methods for assessing goodness-of-fit, however, are less developed and this is especially pronounced in calculating goodness-of-fit tests with sparse data, when the standard tests (deviance and Pearson test) behave unsatisfactorily. In our paper we show two solutions to the pro...
متن کاملFUZZY LOGISTIC REGRESSION BASED ON LEAST SQUARE APPROACH AND TRAPEZOIDAL MEMBERSHIP FUNCTION
Logistic regression is a non-linear modification of the linearregression. The purpose of the logistic regression analysis is tomeasure the effects of multiple explanatory variables which can becontinuous and response variable is categorical. In real life there aresituations which we deal with information that is vague innature and there are cases that are not explainedprecisely. In this regard,...
متن کاملComparison of ordinary logistic regression and robust logistic regression models in modeling of pre-diabetes risk factors
Background: Regarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors. Methods: This is a cross-sectional study and conducted on 6460 people, over ...
متن کاملIncreasing the power: A practical approach to goodness-of-fit test for logistic regression models with continuous predictors
When continuous predictors are present, classical Pearson and deviance goodness-of-fit tests to assess logistic model fit break down. The Hosmer–Lemeshow test can be used in these situations. While simple to perform and widely used, it does not have desirable power in many cases and provides no further information on the source of any detectable lack of fit. Tsiatis proposed a score statistic t...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 21 18 شماره
صفحات -
تاریخ انتشار 2002